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A series ofγ-brass related structures in the Zn-rich portion of the Zn-Pd phase diagram (ca. 80 at %
Zn) is investigated using single-crystal diffraction and tight-binding electronic-structure calculations. Earlier
research identified regular arrays of inversion antiphase domains (IAPDs) over a narrow composition
range but did not report any characteristic superstructure(s) over the same range. Single-crystal X-ray
diffraction allowed for the identification of lattice constants for six “phases” in Zn1-xPdx (0.15 < x <
0.25), and refinements of two crystal structures indicate two important potential building blocks for the
intermediate compositions, one of these being the cubicγ-brass structure. A Farey tree construction is
described that accounts for the observed long-period superlattice and provides a possible algorithm for
targeting one-dimensional, quasiperiodic phases in this and related systems. Tight-binding electronic-
structure calculations on the two limiting structures for this region of the Zn-Pd phase diagram suggest
a relationship between structure and bonding in these complex intermetallic systems.

Introduction

The discovery of the first quasicrystal,i-AlMn, by
Schechtman et al. in 19841 has energized research in the field
of complex intermetallics toward uncovering other systems
with structures and compositions that exhibit quasiperiodicity.
Numerous quasicrystalline phases have been discovered and
characterized that show icosahedral, dodecagonal, and oc-
tagonal symmetry in their diffraction patterns.2,3 From these
observations, a common practice emerged of defining
quasicrystals by requiring that they possess a symmetry axis
that is incompatible with translational periodicity, which
eliminates any one-dimensional quasicrystals and restricts
quasicrystals in two or three dimensions to possess an axis
of N-fold symmetry, withN ) 5 or N > 6.4 Lifshitz argues
that this definition is too restrictive because it excludes
structures that show properties of quasicrystals without
possessing forbidden symmetries. He, therefore, proposes the
definition that quasicrystals are, in fact, quasiperiodic
crystals, with the proviso that the crystals are strictly
aperiodic, which includes one-dimensional (1D) quasicrys-
tals.4,5

Although numerous quasicrystals have been identified and
physically characterized, their atomic structures in real space
still elude complete characterization. The noncrystallographic

point symmetry of their diffraction patterns has been partially
solved by the use of unconventional mathematical tools, such
as higher-dimension space groups.2,6 However, even these
mathematical tools have not yet totally succeeded in deter-
mining a complete quasicrystalline structure. One way to
overcome the difficulties implied by the quasiperiodicity of
these phases is to synthesize and study a sequence of
traditional crystalline compounds called approximants with
increasing cell parameters, which converge to a quasicrys-
talline structure.7,8 Examples include Bergman and Mackay
phases.9

A number of systems showing quasicrystals and their
approximants also reveal the occurrence of cubicγ-brass
phases.10-14 Further investigation strongly suggests relation-
ships between the structure ofγ-brass and quasicrystals: for
example, the [1h10] direction of the cubicγ-brass structure
is parallel to the 10-fold axis of decagonal phases or the
5-fold axis of icosahedral phases.13 γ-brass phases are
included among Hume-Rothery phases, which are stabilized
by the interaction between the Fermi surface (in the free-
electron model, this is a sphere with radiuskF) and the
Brillouin zone (convex polyhedra with faces located at planes
perpendicular toK /2, whereK is a reciprocal lattice vector).15
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Electron-diffraction studies ofγ-brass phases have shown
superstructures consisting of inversion antiphase domains
(IAPDs) that are sufficiently regular.16,17Studies of the Cu-
Zn and Ni-Zn systems suggest that their dimensions vary
continuously with composition so that there is no charac-
teristic superstructure of the entire range of compositions
where IAPD structures are observed.18 Recent investigations
in the Pt-Zn and Pd-Cd systems have elucidated some
crystal structures that can help explain these observations.19-22

In all cases, the direction of the superstructure is parallel
with [110] for the cubicγ-brass structure, along which are
found chains of icosahedra. Therefore, along this direction,
1D quasiperiodicity could exist and these IAPD structures
can be explained by intergrowths of cluster units within these
chains.23

A 1D quasiperiodic structure may be easily generated by
the simple example of the Fibonacci chain.2 The Fibonacci
sequence is an automorphism: if we define two different
segments,S and L, for the first generation, they become,
respectively,L andLS in the next generation, which provides
the algorithm to create the “quasiperiodic” chain. In the limit
of the infinitely long chain, the ratio of the number ofL to
the number ofSsegments approaches the golden mean, i.e.,
L:S f τ ≈ 1.618. Periodic chains approximating this ratio
of the number ofL to the numberSsegments involve ever-
enlarging unit cells whereL:S) Fn+1/Fn andFn is an integer
in the Fibonacci sequence (F1 ) 1, F2 ) 1, andFn+1 ) Fn

+ Fn-1). From a chemical perspective, the segmentsL and
Scan be distinct elements or molecular groups that will link
via chemical (orbital) or physical (electrostatic or van der
Waals) interactions. Such periodic chains are approximants
to the quasiperiodic 1D Fibonacci chain described above.
Table 1 summarizes this sequence. If the fundamental length
scales of the segmentsL andS, respectively, areDL andDS,
then the unit cell lengths are simplyDn ) Fn-2DS + Fn-1DL.
An earlier work by one of us also demonstrated that the

occupied electronic states could drive the formation of such
structures with optimal orbital fillings related to the corre-
sponding electronic structures of the individual segmentsL
and S.24,25 Therefore, the optimal number of electrons per
segment in each chain will beNn ) (Fn-2NS + Fn-1NL)/Fn,
whereNS andNL are the preferred electron counts for each
segment.

In this report, we discuss the characterization of binary
samples from the Zn-rich Zn-Pd system and demonstrate
how the identification of two important building units can
be combined via an intergrowth mechanism, diagrammed
in a Farey tree, toward a possible 1D quasiperiodic struc-
ture.23 The intergrowth structures correspond to IAPDs
related to the cubicγ-brass structure already reported in the
Zn-Pd and other Hume-Rothery systems.18 These investiga-
tions in the Zn-rich portion of the Zn-Pd system and
subsequent conclusions are related to the idea that a prototype
1D quasicrystal, as defined by the Fibonacci sequence, can
be regarded both as a quasicrystal and as an incommensu-
rately modulated crystal.4 Consequently, there are two
different ways to achieve the atomic structure. Perez Mato
et al.26 and Lord et al.27 investigated this idea by trying to
correlate the ordering of either vacancies or successions of
octahedra/trigonal prisms with the Fibonacci sequence in
their respective systems. In the Zn-Pd system, which follows
Hume-Rothery’s principles of electron compounds,28 the
cubic γ-brass phase is preferred for a valence electron
concentration (vec) valence s, p electrons/atom ratio) of
1.61 valence s and p electrons/atom but shows a wide range
in composition that varies from its published phase diagram.29

Thus, we explored this system to investigate the relationship
between structure and valence electron concentration, espe-
cially for quasiperiodic structures.

Experimental Section

Synthesis.Various Zn1-xPdx targets with compositions ranging
from x ) 0.15 tox ) 0.25 were prepared by the same synthetic
method. The elements were used as obtained: Pd (99.99%, Aldrich)
and Zn (99.999%, Aldrich). All elements and products were stored
and handled in an argon-filled glovebox. Reactions were carried
out by heating a mixture of the elements at the appropriate molar
ratio in a sealed, evacuated silica tube at 1023 K for 2 days. After
naturally cooling the mixture to room temperature by turning off
the furnace, we observed shiny crystals of the targeted phase. Six
different, but closely related, compositions were explored in the
Zn1-xPdx system.

Analysis. Single crystals that were examined by X-ray diffraction
were subsequently examined by energy-dispersive X-ray spectros-
copy (EDS) on a Hitachi S-2460N ESEM and gave quantitative
formula in good agreement with the loaded compositions. For
quantitative values, elemental Zn and Pd were used as standards.
The results of the quantitative analysis agreed within 1% with the
composition loaded in the silica tubes. The average value for each
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Table 1. Summary of Approximants to the 1D Fibonacci Chain
with Respect to Sequence of Fundamental Segments, Ratios of

Numbers of Segments, Lengths of Unit Cells, and Valence Electrons
Per Unit Cell

chain unit cell L:S Fn Dn Nn

1 ‚‚‚S‚‚‚ 0:1 1 DS NS

2 ‚‚‚L‚‚‚ 1:0 1 DL NL

3 ‚‚‚LS‚‚‚ 1:1 2 DS + DL (NS + NL)/2
4 ‚‚‚LSL‚‚‚ 2:1 3 DS + 2DL (NS + 2NL)/3
5 ‚‚‚LSLLS‚‚‚ 3:2 5 2DS + 3DL (2NS + 3NL)/5
6 ‚‚‚LSLLSLSL‚‚‚ 5:3 8 3DS + 5DL (3NS + 5NL)/8
7 ‚‚‚LSLLSLSLLSLLS‚‚‚ 8:5 13 5DS + 8DL (5NS + 8NL)/13
∞ τ:1 Fn-2 + Fn-1 (NS + τ NL)/(τ + 1)
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sample, which is listed in Table 2, was obtained from 10 points
measured in different locations for each sample.

Diffraction. Room temperature (ca. 300 K) data collections were
carried out for all phases on single crystals using a Bruker SMART
1000 CCD diffractometer with Mo KR radiation (λ ) 0.71073 Å)
and a detector-to-crystal distance of 5.08 cm. Crystals were selected
and mounted at the ends of glass fibers within epoxy. Data were
collected in a full hemisphere and harvested by collecting three
sets of frames within 0.3° scans inω for an exposure time of 10 s
per frame. The range of 2θ extended from 4.0 to 57.0°. Unit cell
parameters were determined by indexing 200-999 reflections and
then refined using all observed Bragg reflections after integration.
Thereafter, the reflection intensities were integrated with theSAINT
subprogram in theSMARTsoftware package.30 The intensities were
adjusted for Lorentz polarization and corrected for absorption via
a Gaussian analytical method, and the crystal shapes and dimensions
were optimized with the STOEX-Shapeprogram31 on the basis of
equivalent reflections. All data treatments, refinements, and Fourier
syntheses were carried out using theSIR97andJANA2000program
packages.32,33

Electronic Structure. Tight-binding linear muffin-tin orbital
(TB-LMTO) electronic-structure calculations were carried out for
Zn11Pd2 and Zn53Pd16 in the atomic sphere approximation (ASA)34

using theLMTO program, version 4.7.35 Exchange and correlation
were treated in a local density approximation.36 All relativistic
effects except spin-orbit coupling were taken into account using
a scalar relativistic approximation.37 The radii of the Wigner-Seitz
(WS) spheres were obtained by requiring that the overlapping
potential be the best possible approximation of the full potential
according to an automatic procedure; no empty spheres were
necessary.38 The WS radii determined by this procedure for Pd and

Zn in these two compounds ranged, respectively, between 1.48 and
1.52 Å and 1.48 and1.57 Å. The basis set for these calculations
included Pd 5s, 5p, and 4d and Zn 4s, 4p, and 3d orbitals. The
k-space integrations to determine the self-consistent charge density,
density of states, and crystal Hamiltonian orbital populations
(COHP) were performed by the tetrahedron method39 using 172
and 52 k-points, respectively, in the irreducible wedges of the unit
cells of Zn11Pd2 (cubic) and Zn53Pd16 (orthorhombic).

Results

Among the six samples that were investigated by single-
crystal X-ray diffraction experiments, those that exceeded
20 at % Pd (five out of six samples) gave data sets that were
consistent with orthorhombic symmetry and could be indexed
with either anF- or C-centered orthorhombic Bravais lattice.
The one sample below 20 at % Pd was solved as a cubic
γ-brass phase, space groupI4h3m and lattice constant ca. 9.1
Å. Transformation of this cubic unit cell according toa f
aorth ) a - c, b f borth ) b, andcf corth ) a + c provides
a consistent orthorhombic description of this phase with cell
parametersa ≈ 12.9 Å, b ≈ 9.1 Å, andc ≈ 12.9 Å and
space groupFm2m, a subgroup ofI4h3m. All six phases now
show similar length scales along the orthorhombicaorth and
borth directions as, respectively, 12.9 and 9.1 Å, whereas the
orthorhombiccorth direction can be described as 4.3n Å,
wheren is an integer defining the Pd network periodicity.
Zn10.65Pd2.35 (x ) 0.181 in Zn1-xPdx) represents the casen
) 3, where thea andc parameters are equal and additional
symmetry operations exist that lead to cubic symmetry. The
misfit character of all the structures with two distinct main
subsets and satellite reflections is clear from their corre-
sponding diffraction patterns (see Figure 1). For example,
primaryhkl reflections are observed forl ) 8 andl ) 13 in
the case of Zn52.32Pd16.68 (x ) 0.242). Table 2 summarizes
the lattice constants and some structural and electronic
characterizations of these six samples.

Among these six products, the two compounds at the
highest and lowest Pd concentrations could be refined by
standard single-crystal X-ray diffraction methods. The main
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Table 2. Compositions, Valence s and p Electron Concentrations, Structural Parameters, and Periodicities of the Subnetworks for Different
Zn1-xPdx (x ) 0.15-0.25) Intergrowth Compoundsa

composition (loaded) Zn82Pd18 Zn79Pd21 Zn78Pd22 Zn77.5Pd22.5 Zn77Pd23 Zn75Pd25

EDS results Zn82.1(6)Pd17.9 Zn79.6(6)Pd20.4 Zn78.2(6)Pd21.8 Zn77.7(6)Pd22.3 Zn77.2(5)Pd22.8 Zn75.4(6)Pd24.6

valence s and p electrons 1.642 1.592 1.564 1.554 1.544 1.508
composition (refined) Zn81.9Pd18.1 Zn75.8Pd24.2

no. of measured reflns 3239 107 721 48 515 68 759 152 623 15 929
aorth (Å) 12.912(6) 12.919(8) 12.909(5) 12.927(7) 12.915(4) 12.929(3)
borth (Å) 9.0906(3) 9.091(6) 9.115(3) 9.120(9) 9.114(3) 9.112(4)
corth (Å) 12.912(6) 106.86(6) 46.894(5) 80.98(5) 146.10(13) 33.32(1)
space group Fm2m Cmce
V (Å3) 1515.6(9) 12550.3(9) 5517.8(9) 9547.1(9) 17197.0(9) 3925.4(9)
m/n 5/3 41/25 18/11 31/19 57/35 13/8
estimatedc paramb (Å) 12.9 107.5 47.3 81.7 150.5 34.4
estimatedc paramc (Å) 12.912 105.376 46.232 79.552 146.192 33.32
V/atom (Å3) 14.45 14.32 14.28 14.25 14.23 14.22
no. of atoms/cell 52 876 386 670 1208 276
clusters (nS: 2nL) 1:0 3:4 1:2 1:4 1:8 0:2
Nx 1.642 1.588 1.575 1.553 1.534 1.508

a Information presented in italics indicates estimates based upon theoretical and structural models described in the text. See text for discussion ofvarious
parts of this table.b c ) 4.3n Å. c c ) (12.912nS + 33.32nL) Å.
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crystallographic data, atomic coordinates, crystallographic
site occupancies, and temperature displacement parameters
are summarized in Tables 3-6.

Zn10.65Pd2.35 (Zn0.819Pd0.181) crystallizes in the well-known
cubicγ-brass phase that exists for a variety of Hume-Rothery

intermetallic systems, such as Ni-Zn (Ni2Zn11)40 or Fe-Zn
(Fe3Zn10).41 Our results nearly agree with an earlier crystal
structure solution from Edstrom et al., which concluded a
composition between Zn0.81Pd0.19(Zn10.5Pd2.5) and Zn0.77Pd0.23

(Zn10Pd3).42 The cubicγ-brass structure for Zn10.65Pd2.35 is

(40) Johansson, A.; Ljung, H.; Westman, S.Acta Chem. Scand.1968, 22,
2743.

(41) Belin, C. H. E.; Belin, R. C. H.J. Solid State Chem.2000, 151, 85.
(42) Edstro¨m, V.-A.; Westman, S.Acta Chem. Scand.1969, 23, 279.

Figure 1. Diffraction patterns observed for Zn79Pd21 using two different diffractometers (Bruker Apex and Stoe IPDS). The main reflections may be
indexed according to the cubicγ-brass unit cell, whereas the satellite reflections are in agreement with a long-period superlattice formation with orthorhombic
symmetry. In this particular case, the long period may be estimated to be 106.86(6) Å.

Table 3. Crystallographic Data for Zn10.65Pd2.35 (Zn81.9Pd18.1).

formula Zn10.65Pd2.35

mol wt (g mol-1) 946.42
cryst syst cubic
space group I4h3m
T (K) 293(2) K
a (Å) 9.0906(3)
V (Å3) 751.238(3)
Z 4
dcalcd(Mg m-3) 8.9807
cryst description needle
cryst size (mm3) 0.5× 0.2× 0.1
diffractometer Bruker SMART Apex
radiation Mo
no. of measured reflns 3239
index ranges -6 < h < 6, -8 < k < 8,

-12 < l < 12
θ range for data collection (deg) 2.39-24.05
linear abs coeff (mm-1) 41.530
abs corr analytical
criterion for observed reflns 2σ
Rint (obs) 0.0379
refinement method Full-matrix least-squares onF2

F(000) 1710
no. of independent reflns 2955 [R(int)) 0.0379]
data/restraints/params 200/0/19
GOF onF2 1.33
final R indices [I > 2σ(I)] R1 ) 0.0129, wR2) 0.0268
extinction coeff 0.026(2)
largest diff. peak and hole (e-/Å3) 0.53 and-0.76

Table 4. Fractional Atomic Coordinates, Site Occupation Factors,
and Isotropic Equivalent Displacement ParametersUEq (Å2) for

Zn10.65Pd2.35.

Wyckoff
site SOF Zn/Pd x y z Ueq

Pd1 8c 0.82677(3) 0.82677(3) 0.82677(3) 0.0079(1)
Zn2 8c 0.10866(6) 0.89134(6) 0.89134(6) 0.0130(1)
M3 12e 0.882(6)/0.118 0.64243(7) 0 0 0.0105(2)
Zn4 24g 0.53889(6)-0.18905(4)-0.18905(4) 0.0132(1)

Table 5. Crystallographic Data for Zn52.32Pd16.68 (Zn75.8Pd24.2).

formula Zn52.32Pd16.68

mol wt (g mol-1) 5195.47
cryst syst orthorhombic
space group Cmce
T (K) 293(2)
a (Å) 12.929 (3)
b (Å) 9.112 (4)
c (Å) 33.32 (1)
V (Å3) 3925.4(9)
Z 4
dcalcd(Mg/m3) 8.7884
cryst description needle
cryst size (mm3) 0.4× 0.1× 0.1
Diffractometer Bruker Smart Apex
radiation Mo
no. of measured reflns 15 929
index ranges -13 < h 177408n,

-10 < k < 10,
-38 < l < 38

θ range for collection (deg) 2.39-24.05
Linear abs coeff (mm-1) 38.653
abs corr analytical
criterion for obs reflns 2σ
Rint (obs) 0.0402
refinement method full-matrix least

-squares onF2

F(000) 9240
no. of independent reflns 1184
data/restraints/params 1184/0/178
GOF onF2 1.46
Final R indices [I > 2σ(I)] R1 ) 0.0288,

wR2 ) 0.0385
extinction coeff 0.000163(9)
largest diff. peak and hole (e-/Å3) 1.97 and-2.75
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illustrated from various perspectives in Figure 2. The most
traditional description involves the 26-atom cluster con-
structed from successive polyhedral shells: (a) an inner
tetrahedron of Zn atoms; (b) an outer tetrahedron of Pd
atoms; (c) an octahedron of Zn/Pd atoms, and (d) a distorted
cuboctahedron of Zn atoms. These clusters form a body-
centered cubic packing; this classical description begins from
a 3 × 3 × 3 superstructure of a bcc packing of atoms
followed by removing 2 atoms from the 54-atom supercell
(one from the corner, one from the center of the supercell)
and then shifting the remaining atomic sites to the resulting
coordinates. Explanation of the existence and stability of this
cubicγ-brass structure has received much attention, and the
Jones-Hume-Rothery mechanism of interaction between the
Fermi sphere and the Brillouin zone planes (330) and (411)
has been theoretically verified through recent electronic-
structure calculations.15 On the other hand, the viewpoint as
a distorted “defect-bcc” structure has been contested by first
principles total energy calculations of various structural
models.43 Therefore, we can also view the cubicγ-brass
structure of Zn10.65Pd2.35 as being constructed from a cluster
of four interpenetrating Pd-centered icosahedra,44 which can

be formulated as [Pd(8c)(Zn3/3
(8c) M3/2

(12e) Zn6/2
(24g))]4. Zn atoms

exclusively occupy the convex vertexes of this cluster,
whereas the concave vertexes refine as a mixture of Pd (ca.
11%) and Zn (ca. 89%) atoms. Pd-Zn/M distances range
between 2.590 and 2.880 Å, whereas the shortest distance
in this structure, 2.590 Å, occurs between pairs of M sites.
Significant distances are summarized in Table 7.

Figure 2 also shows the importance of these clusters for
the extendedγ-brass structure; pairs of face-sharing Pd-
centered icosahedra form chains along{110} directions of
the cubic cell. These clusters are connected by polyhedra
centered by the M sites. These chains are emphasized in
Figure 3, and we will return to this perspective in a
subsequent section.

On the other hand, the structure of Zn52.32Pd16.68is closely
related to the NiZn3 structure refined by Nover et al. in 198045

and recently reexamined by Lee and Harbrecht et al.46 as
part of investigations on Vernier structures and other complex
intermetallics. The structure is illustrated in Figure 4 and

(43) Paxton, A. T.; Methfessel, M.; Pettifor, D. G.Proc. R. Soc. London,
Ser. A1997, 453, 1493.

(44) Lord, E. A.; Ranganathan, S.J. Non-Cryst. Solids2004, 334-335,
121.

(45) Nover, G.; Schubert, K.J. Less-Common Met.1980, 75, 51.

Table 6. Fractional Atomic Coordinates, Site Occupation Factors,
and Equivalent Displacement ParametersUEq (Å2) for Zn 52.32Pd16.68

Wyckoff
site SOF Zn/Pd x y z Ueq

Zn1 4a 0 0 0 0.0153(1)
Zn2 8f 0 0.04024(3) 0.07885(3) 0.0123(2)
Zn3 8f 0 -0.05148(3) 0.15548(5) 0.0080(1)
Zn4 8f 0 0.05184(4) 0.22720(5) 0.0113(1)
Zn5 8f 0 -0.01080(5) 0.30666(6) 0.0114(2)
Zn6 8f 0 -0.02527(3) 0.38619(6) 0.0118(1)
Zn7 8f 0 0.05368(5) 0.46359(7) 0.0087(2)
Pd8 8f 0 0.27203(5) 0.03098(6) 0.0081(1)
Pd9 8f 0 0.23873(6) 0.15657(5) 0.0115(2)
Pd10 8f 0 0.26657(4) 0.28086(5) 0.0110(2)
Pd11 8f 0 0.25696(4) 0.40658(4) 0.0090(2)
Zn12 16g 0.12872(3) 0.26222(4) 0.09303(3) 0.0122(2)
Zn13 16g 0.12731(4) 0.28331(5) 0.22024(5) 0.0102(1)
Zn14 16g 0.11658(5) 0.20586(5) 0.34407(3) 0.0098(1)
Zn15 16g 0.12120(5) 0.29429(6) 0.46767(5) 0.0117(2)
M16 16g 0.89(1)/0.11 0.17639(6) 0.59381(5) 0.08746(5) 0.0124(1)
M17 16g 0.69(1)/0.31 0.17763(7) 0.59341(5) 0.22429(6) 0.0090(1)
Zn18 16g 0.18608(5) 0.62713(3) 0.34129(5) 0.0131(2)
M19 16g 0.17(1)/0.83 0.17843(5) 0.58617(8) 0.46449(5) 0.0073(1)
Zn20 16g 0.17672(5) 0.59473(8) 0.60148(4) 0.0078(2)
Zn21 16g 0.17996(4) 0.60215(7) 0.71031(4) 0.0155(2)
M22 16g 0.08(1)/0.92 0.17851(5) 0.57886(6) 0.84530(3) 0.0077(1)
Zn23 16g 0.18381(6) 0.61574(6) 0.97540(6) 0.0112(1)

Table 7. Interatomic Distances in Zn10.65Pd2.35 and Zn52.32Pd16.68 as
Determined from Single-Crystal X-ray Diffraction Experiments

Zn10.65Pd2.35 Zn52.32Pd16.68

Pd1 (CN12) Zn2 2.6937(6) (×3) Pd (CN12) Zn 2.5728(7)
to 2.7916(8)

M3 2.7871(5) (×3) M19 2.8658(7)
Zn4 2.6249(6) (×6

M3 (CN11) Zn2 2.6592(7) (×2) Pd9 (CN11) Zn 2.5796(15)
to 2.7157(19)

M3 2.5896(8) M22 2.8449 (7)
Zn4 2.6063(5) (×2)

2.8801(4) (×4)
2.7868(6) (×2)

other Zn-Zn
distances

2.6768(7)-2.7940(8) other Zn-Zn
distances

2.5681(7)-
2.8342(8)

Figure 2. Representations of the cubicγ-brass structure of Zn10.65Pd2.35.
Blue spheres, Zn atoms; red spheres, Pd atoms; purple spheres, mixed Pd/
Zn sites. Top left: 26-atom cluster that forms a bcc-type packing, with an
emphasis on the different polyhedra. Top right: Four condensed Pd-centered
icosahedra. Bottom: (010) projection of theγ-brass structure. Horizontal
direction is [101] and emphasizes the Pd- and M-centered polyhedra.

Figure 3. Top: chain along [110] in theγ-brass structure of Zn10.65Pd2.35.
Yellow icosahedra are Pd-centered; blue icosahedra are (Pd/Zn)-centered
and involve two Pd sites. Bottom left: [Zn8M4]Pd-centered icosahedron.
Bottom right: [Zn10Pd2]M-centered distorted icosahedron.
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highlights the chains of Pd-centered polyhedra along the
crystallographicc direction. Zn52.32Pd16.68 shows clusters of
three consecutive face-sharing Pd-centered icosahedra. The
middle icosahedron involves just Zn atoms, whereas the two
terminal icosahedra show two sites with mixed Zn/Pd
occupancies. The centering atoms are exclusively Pd sites.
Under complete segregation of the elements, the expected
composition would be Zn49Pd20, which is more Pd-rich than
these phases allow (close to 28 at % Pd), as confirmed by
electronic-structure calculations (see below). These clusters
are connected by Pd-centered 11-vertex polyhedra when a
distance limit is set at 2.90 Å. If a slightly larger distance
criterion is used (e.g., less than 3.00 Å), then this polyhedron
is a distorted icosahedron. These polyhedra are illustrated
in Figure 5. Important distances for these clusters are
summarized in Table 7. The primitive unit cell contains two
equivalent chains.

Analysis of the crystal structures of Zn0.819Pd0.181 and
Zn0.758Pd0.242shows that the volume per atom increases with
the concentration of Zn. Although this result may seem
counterintuitive, in fact, the ground-state atomic volumes for
hcp Zn and fcc Pd, respectively, are 15.21 and 14.72 Å3.
Furthermore, all atomic volumes in this study lie well below
these elemental values and are consistent with reported unit
cell volumes for other compounds in the Zn-Pd binary
system:47 (i) ZnPd2 (oP12, 14.12 Å3/atom); (ii) ZnPd (tP4,
14.06 Å3/atom); (iii) Zn3Pd2 (cP2, 14.10 Å3/atom); and (iv)

Zn2Pd (oC48, 14.21 Å3/atom). The relationship between
atomic volumes in the ground-state structures for Zn and
Pd can be understood from their respective electronic
structures. For hcp Zn, the filled energy bands lead to an
approximate electronic configuration of 3d104s2-n4pn; all Zn-
Zn bonding arises from occupation of the valence 4s and 4p
bands, whereas the formally filled 3d band reduces these
orbital interactions through filled-orbital repulsions.48 On the
other hand, fcc Pd shows 4d10-n5sn with the 5p band
essentially empty. Transfer of valence electrons from the 4d
band into the 5s band depletes some Pd-Pd d-d antibonding
orbitals and contributes to shorter, stronger interactions:49

∆Hf
0 (Pd, g)) 377 kJ/mol;∆Hf

0 (Zn, g) ) 129.3 kJ/mol.50

The smaller volumes for the Zn-Pd intermetallic compounds
imply stronger heteroatomic Pd-Zn bonding than homo-
atomic Pd-Pd or Zn-Zn bonding, and we will discuss this
in the next section. Such compression in volumes is evident
among Zintl phases and other polar intermetallic compounds,
which involve metallic or semimetallic elements with
significantly different electronegativities.51

Electronic Structure. Figure 6 shows the electronic
density of states calculated for Zn11Pd2. Note the pseudogap
at the Fermi level for Zn10.65Pd2.35, which is in excellent
agreement with results from other calculations on, for
example, Cu5Zn8 and Cu9Al4.15 The range of the pseudogap
occurs for vec) 1.538-1.692 valence s and p electrons per
atom. In this DOS, the Pd 4d band is ca. 3 eV below the
Fermi level; Zn 3d bands occur 8-10 eV below Fermi. To

(46) S. Lee.Abstracts of Papers, 36th Middle Atlantic Regional Meeting
of the American Chemical Society, Princeton, NJ, June 8-11,
2003;American Chemical Society: Washington, DC.

(47) Villars, P.; Calvert, L. D.Pearson’s Handbook of Crystallographic
Data for Intermetallic Phases, 2nd ed.; ASM International: Materials
Park, OH, 1991.

(48) Häussermann, U.; Simak, S. I.Phys. ReV. B 2001, 64, 245114.
(49) Gourdon, O.; Gout, D.; Miller, G. J.Encyclopedia of Condensed Matter

Physics; Elsevier: Amsterdam, 2005; p 409.
(50) Greenwood, N. N.; Earnshaw, A.Chemistry of the Elements; Pergamon

Press: Oxford, UK, 1984.
(51) Miller, G. J.; Lee, C.-S.; Choe, W. InHighlights in Inorganic

Chemistry; Meyer, G., Ed.; Wiley-VCH: Heidelberg, Germany, 2002;
p 21.

Figure 4. (100) projection of Zn52.32Pd16.68.

Figure 5. Polyhedra surrounding the Pd atoms in the structure of Zn52.32-
Pd16.68as determined by single-crystal X-ray diffraction. Top: [Zn9]Pd cage,
which is an icosahedron missing two vertexes (surrounding Pd9 sites);
[Zn9M2]Pd cage showing the distorted icosahedron. Bottom: Various
icosahedra making up the three face-sharing icosahedra. From left to right,
these polyhedra coordinate, respectively, Pd8, Pd10, and Pd11 sites. The
[Zn12]Pd cluster centers all TI segments.

Figure 6. Total density of states for Zn11Pd2 from TB-LMTO-ASA
calculations. The Fermi level for the observed composition (Zn10.65Pd2.35),
assuming a rigid-band approximation, is shown by the solid vertical line;
the corresponding Fermi levels for Zn11Pd2 and Zn10Pd3 are shown by dotted
lines. The large peak just above-8 eV is mostly Zn 3d orbitals; the broader
peak near-4 eV is mostly Pd 4d orbitals. A pseudogap is evident near the
calculated Fermi levels.
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examine the site preference for Pd among the four crystal-
lographic sites, we carried out calculations using mixed sites,
and there Pd has a strong preference for fully occupying the
observed 16b sites with the next being the 24e sites. In a
recent work, Schmidt et al. used relative Mulliken popula-
tions as calculated from semiempirical calculations to show
that these two sites are preferred for the more electronegative
element in the intermetallic.22 Is Pd more electronegative than
Zn? As measured from configuration energies,52 this is indeed
the case, although these values are extremely close: CE-
(Pd) ) 9.402 eV, CE(Zn)) 9.395 eV (Pauling electrone-
gativities are more widely separated: 2.2 eV for Pd, 1.65
eV for Zn50). These values can be attributed to the variation
in valence d orbital energies across the 3d and 4d series. It
is also of interest that the sizes of Pd and Zn are similar; in
the solids, Zn has filled metal-metal antibonding states from
a filled 3d band, whereas the Pd 4d band is incompletely
filled. Therefore, the lattice expansion from filling antibond-
ing states and the size increase from going from the 4th to
the 5th period are balanced between Zn and Pd.

Another viewpoint of theγ-brass structure is built of four
condensed icosahedra;44 the centers of these icosahedra are

the Pd sites. The calculated COHP curves53 for Pd-Zn and
Zn-Zn interactions in theγ-brass in Figure 7 show that Pd-
Zn orbital interactions are optimized in this compound,
whereas Zn-Zn are not, although the states near the Fermi
level are weakly bonding. This provides an alternative
interpretation to the pseudogap inγ-brasses, which we
continue to study theoretically. In this Pd-Zn phase, the Pd-
Zn bonding is optimized because the Zn 4s and 4p orbitals
of the icosahedron overlap well with the valence 5s and 4d
orbitals of Pd. The 4d orbitals are filled, and the 5s band
shares electrons with the totally symmetric orbital of the
icosahedron. The Pd-Zn bonding orbitals in these clusters
are filled, whereas the Pd-Zn antibonding orbitals are empty.
Optimal Pd-Zn bonding, according to the maximum ICOHP
value, occurs very close to the observed composition of
Zn0.82Pd0.18. Zn-Zn orbital interactions, on the other hand,
would achieve an optimal bonding at 2.22 electrons per atom
according to the COHP curve. It is interesting to notice that
this value is the magic electron count for icosahedral
quasicrystals and the Bergman phases.2,7

The density of states for the Zn52.32Pd16.68 phase is shown
in Figure 8 and also shows a deep pseudogap for electron
counts 1.516-1.682 valence s and p electrons per atom. This
allows for a range of composition that is in excellent
agreement with our observed phases. What this picture does
not yet address is the complicated trend in lattice constants.
Nevertheless, an earlier work by one of us shows that we
can treat the Fibonacci system as a grouping together of two
distinct structural and electronic building blocks.24 The
electronic specifications of the building blocks will lead to
gaps (pseudogaps) in the theoretical electronic structure.
Thus, there can be an electronic driving force for the
observed lattice dimensions.

We can now use these two structures for the limiting
compositions in this Zn-Pd system to identify these
structural and electronic building blocks, which will allow
us to interpret the intermediate compositions as possible

(52) Mann, J. B.; Meek, T. L.; Knight, E. T.; Capitani, J. F.; Allen, L. C.
J. Am. Chem. Soc.2000, 122, 5132. (53) Dronskowski, R.; Blo¨chl, P. E.J. Phys. Chem.1993, 97, 8617.

Figure 7. Total DOS (top) and-COHP (bottom) curves for Zn11Pd2. The
Zn 3d orbitals are not included in either curve so that the states close to the
Fermi levels can be emphasized. Pd orbitals are shown by the red curve.
For the-COHP curves, blue) Zn-Zn interactions and red) Zn-Pd
interactions.

Figure 8. Total density of states for Zn52.32Pd16.68; Zn 3d orbitals are not
included in this plot so that the behavior near the Fermi level, which is
indicated by the solid line, can be highlighted. The dotted line is the Fermi
level for Zn58Pd11 (15.9 at % Pd) and indicates the upper bound of the
pseudogap using a rigid-band approximation.
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intergrowth compounds and potential approximants to 1D
quasicrystals. Figure 9 illustrates (010) projections in they
) 1/4 planes of the structures of Zn10.65Pd2.35 (γ-brass;
orthorhombic setting) and Zn52.32Pd16.68. This figure highlights
the important structure-building fragments: (i) two face-
sharing icosahedra, [Pd2Zn21-nMn] (DI), from Zn10.65Pd2.35;
(ii) three face-sharing icosahedra, [Pd3Zn30-nMn] (TI), from
Zn52.32Pd16.68; and (iii) a spacer, [MZn11-nMn] (QI), found
in both structures (to represent these fragments, we have
selected a distance cutoff of 2.90 Å. If we select a distance
cutoff of 3.00 Å, then these chains consist of quasi-infinite,
face-sharing (distorted) icosahedra). The DI unit has a mirror
plane, so the fundamental length scale in the orthorhombic
cell of the γ-brass structure is‚‚‚QI-DI‚‚‚. On the other
hand, the TI unit has an inversion center, which reverses
the orientation of the QI units on each end, so the
fundamental length scale in Zn52.32Pd16.68 is ‚‚‚QI-TI-QI-
TI‚‚‚. In both structures, these clusters condense to form
chains along the crystallographicc directions, and the
corresponding layers are further condensed in an‚‚‚AB‚‚‚
sequence to create full 3D structures.

As the left part of Figure 9 shows, these length scales can
also be represented by the number of steps between cluster
centers,n (3 and 8, respectively, in Zn10.65Pd2.35 and Zn52.32-
Pd16.68). Another step count occurs at the surfaces of the
clusters,m (5 and 13, respectively, in Zn10.65Pd2.35and Zn52.32-
Pd16.68). These two different step counts are evident in the
diffraction studies during refinements of the lattice param-
eters: using the orthorhombic cells, thec* component shows
observed reflections forl ) pm+ qn (p, q ) integers;m, n
) fundamental length scales). For example, observable
reflections in Zn52.32Pd16.68 (m ) 13, n ) 8) will have l )
13p + 8n. It has already been pointed out that these step
counts involve integers from the Fibonacci series.22

Analogies with the Fibonacci sequence are possible if we
define the dimer unit DI as the short segment (S) and the
trimer unit TI as the long segment (L), as in Table 1, but
because of the inversion center in TI, we require twoL
segments. QI, which is a common unit in both compounds,

corresponds to a spacer between segments. By defining these
SandL segments, Zn10.65Pd2.35 and Zn52.32Pd16.68correspond
to the two first simplest approximants of a hypothetical 1D
quasicrystal. This binary code ofSandL segments may also
be presented by a Farey tree,54 which represents the rational
number relationships within a certain defined interval. From
one level (generation) to the next, the numerators and
denominators, respectively, of the periodicities for two
examples are added together to obtain the rational fraction
for the subsequent generation. In Figure 10, the Farey tree
begins with Zn10.65Pd2.35 (all S segments) and Zn52.32Pd16.68

(all L segments) as the extreme cases. The rational fraction
(m/n) designates the periodicities of the two different chains
described above. Intergrowth of these two structures can then
be deduced using the tree. For example, first generation 5/3
(‚‚‚S‚‚‚) and 13/8 (‚‚‚L-L‚‚‚) go into the second generation
18/11 (‚‚‚S-L-L‚‚‚). Subsequently, a combination of a first
generation 13/8 (‚‚‚L-L‚‚‚) and the second generation 18/
11 (‚‚‚S-L-L‚‚‚) gives a third generation 31/19 (‚‚‚L-L-
S-L-L‚‚‚) structure.

The unit cell length along these chains can then be
approximated in two complementary ways: (1)c ) 4.3n Å,
because the separation between metal atoms in the centers
of DI, TI, and QI is nearly invariant (ca. 4.3 Å); or (2)c is
the linear combination of the corresponding contributions
of theSandL length scales according to the Farey tree:DS

) dDI + dQI andDL ) dTI + dQI, soc ) nSDS + 2nLDL (nS,
nL ) integers). As a first approximation, we useDS )
c(Zn10.65Pd2.35) ) 12.912 Å andDL ) c(Zn52.32Pd16.68) )
33.32 Å. There will be deviations due to the changes in
composition, but as Table 2 shows, the agreement with our
experimental determinations is quite good. We have observed
from the refined unit cell parameters that the average volume
per atom drops as the Pd content increases. In a fashion
similar to that for the length of unit cellc parameter, we
can approximate the optimal valence s and p electron

(54) The Farey Series of Order 1025; Royal Society Mathematical Tables,
Vol. I; University Press: Cambridge, U.K., 1950.

Figure 9. Illustration of the clusters DI (Pd2{Zn20.4Pd0.6}) or TI (Pd3{Zn7.5Pd2.5}) and QI that build the Zn10.65Pd2.35 structure (top) and the Zn52.32Pd16.68

structure (bottom part). The views of the pseudoperiodicities of the two different subnetworks are also illustrated.
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concentration per atom (and, thus, the Zn/Pd composition)
using the concept that we can use the weighted average of
the valence electron concentrations for the two first genera-
tion structures. Therefore,Nx ) nSN0.181+ nLN0.242) (1.642)-
nS + (1.508)nL. These conclusions are also summarized in
Table 2.

One essential characteristic of this Farey tree is the route
converging toward the golden mean ratios of eitherS:L or
L:S, which contain the fractions whose numerators and
denominators are given by the Fibonacci numbers (5/3)
F5/F4 and 13/8) F7/F6 are two points along this route). With
respect to the structural chemistry of this series, all crystalline
examples constitute approximants to the fully quasiperiodic
chains at the end of this tree. (There are so-called Fibonacci
phases, which are periodic in two-dimensions and quasi-
periodic in the third one, many of which are metastable or
occur during the transition between icosahedral and crystal-
line or decagonal and crystalline phases;55,56however, to the
best of our knowledge, none of the reported examples shows
a series of approximants tending toward the Fibonacci phase.)
As we have seen that the length scale and the valence

electron concentration can be approximated using the
algorithm set up by the Farey tree, can we predict the atomic
structure of the more-complicated examples along this tree.
Models of these structures are also illustrated in Figure 10.
However, there remains sufficient structural flexibility to
warrant a complete determination of these crystal structures,
which will best be handled using superspace methods by
generalizing the structure refinement using a simple modi-
fication of the modulated vector from phase to phase.57 Such
an analysis has been done recently on CoZn7.8 by Lind et al.
that partially confirms our thoughts.58 An example of the
possible structural possibilities is the case Zn79Pd21 (estimated
as 41/25 on the Farey tree), which can show any of the
following unit cell arrangements along thec direction: (1)
‚‚‚S-S-S-L-L-L-L‚‚‚; (2) ‚‚‚S-L-L-S-S-L-L‚‚‚; (3)
‚‚‚L-S-L-S-L-S-L‚‚‚; and (4)‚‚‚S-L-S-S-L-L-L‚
‚‚. Nevertheless, as the length scale increases, the new
approximant becomes closer to a 1D quasicrystal. Therefore,
the Farey tree allows us to target and synthesize as many
new Zn1-xPdx phases as desired, if we are able to control
the composition precisely. At present, we have identified six
phases. In principle, we could synthesize 1D quasicrystal
approximants as close as desired to the perfect Fibonacci
sequence.

The study of Zn-Pdγ-brass phases is extremely promising
as a way to further understanding of the relationships between
intergrowth compounds, quasicrystals, and the possible
electronic driving forces for their existence. The Farey tree
representation implies the existence of numerousγ-brass
phases in the Zn-Pd system, but keep in mind that the Farey
tree representation is based on commensurate approxima-
tions, even if we suspect that incommensurate phases could
exist. Nevertheless, such a representation, even if it may be
restrictive to the commensurate cases, may be helpful for
understanding the evolution new quasiperiodic or quasic-
rystalline structures.
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Figure 10. (a) Farey tree representation of the different hypothetical
structures that may be obtained on the basis of parent compounds Zn10.65-
Pd2.35 and Zn52.32Pd16.68. The parent compounds define the short (S) and
long (L) segment in the description of these as 1D approximant quasicrys-
talline phases. (b, c) Hypothetical atomic arrangements created on the basis
of our sequence for the combinations 41/25 and 57/35, respectively.
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